Morphogenetic circuitry regulating growth and development in the dimorphic pathogen Penicillium marneffei.

نویسندگان

  • Kylie J Boyce
  • Alex Andrianopoulos
چکیده

Penicillium marneffei is an emerging human-pathogenic fungus endemic to Southeast Asia. Like a number of other fungal pathogens, P. marneffei exhibits temperature-dependent dimorphic growth and grows in two distinct cellular morphologies, hyphae at 25°C and yeast cells at 37°C. Hyphae can differentiate to produce the infectious agents, asexual spores (conidia), which are inhaled into the host lung, where they are phagocytosed by pulmonary alveolar macrophages. Within macrophages, conidia germinate into unicellular yeast cells, which divide by fission. This minireview focuses on the current understanding of the genes required for the morphogenetic control of conidial germination, hyphal growth, asexual development, and yeast morphogenesis in P. marneffei.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An STE12 homolog from the asexual, dimorphic fungus Penicillium marneffei complements the defect in sexual development of an Aspergillus nidulans steA mutant.

Penicillium marneffei is an opportunistic fungal pathogen of humans and the only dimorphic species identified in its genus. At 25 degrees P. marneffei exhibits true filamentous growth, while at 37 degrees P. marneffei undergoes a dimorphic transition to produce uninucleate yeast cells that divide by fission. Members of the STE12 family of regulators are involved in controlling mating and yeast-...

متن کامل

The RFX protein RfxA is an essential regulator of growth and morphogenesis in Penicillium marneffei.

Fungi are small eukaryotes capable of undergoing multiple complex developmental programs. The opportunistic human pathogen Penicillium marneffei is a dimorphic fungus, displaying vegetative (proliferative) multicellular hyphal growth at 25 degrees C and unicellular yeast growth at 37 degrees C. P. marneffei also undergoes asexual development into differentiated multicellular conidiophores beari...

متن کامل

Cell-Type–Specific Transcriptional Profiles of the Dimorphic Pathogen Penicillium marneffei Reflect Distinct Reproductive, Morphological, and Environmental Demands

Penicillium marneffei is an opportunistic human pathogen endemic to Southeast Asia. At 25° P. marneffei grows in a filamentous hyphal form and can undergo asexual development (conidiation) to produce spores (conidia), the infectious agent. At 37° P. marneffei grows in the pathogenic yeast cell form that replicates by fission. Switching between these growth forms, known as dimorphic switching, i...

متن کامل

In Vivo Yeast Cell Morphogenesis Is Regulated by a p21-Activated Kinase in the Human Pathogen Penicillium marneffei

Pathogens have developed diverse strategies to infect their hosts and evade the host defense systems. Many pathogens reside within host phagocytic cells, thus evading much of the host immune system. For dimorphic fungal pathogens which grow in a multicellular hyphal form, a central attribute which facilitates growth inside host cells without rapid killing is the capacity to switch from the hyph...

متن کامل

Fungal dimorphism: the switch from hyphae to yeast is a specialized morphogenetic adaptation allowing colonization of a host.

The ability of pathogenic fungi to switch between a multicellular hyphal and unicellular yeast growth form is a tightly regulated process known as dimorphic switching. Dimorphic switching requires the fungus to sense and respond to the host environment and is essential for pathogenicity. This review will focus on the role of dimorphism in fungi commonly called thermally dimorphic fungi, which s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eukaryotic cell

دوره 12 2  شماره 

صفحات  -

تاریخ انتشار 2013